Invertibility of Multiplication Modules

نویسنده

  • MAJID M. ALI
چکیده

Invertibility of multiplication modules All rings are commutative with 1 and all modules are unital. Let R be a ring and M an R-module. M is called multiplication if for each submodule N of M, N=IM for some ideal I of R. Multiplication modules have recently received considerable attention during the last twenty years. In this talk we give the de nition of invertible submodules as a natural generalization of invertible ideals, then we introduce the concept of Dedekind modules and Prufer modules. An R-module M is Dedekind ( resp. Prufer) if every non-zero ( resp. nonzero nitely generated) submodule of M is invertible. We introduce and investigate the concepts of generalized multiplication Dedekind modules and almost multiplication Dedekind modules. We also give some properties of non nitely generated submodules of faithful multiplication valuation modules and nally we characterize faithful multiplication modules via m-canonical submodules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

STRONGLY DUO AND CO-MULTIPLICATION MODULES

Let R be a commutative ring. An R-module M is called co-multiplication provided that foreach submodule N of M there exists an ideal I of R such that N = (0 : I). In this paper weshow that co-multiplication modules are a generalization of strongly duo modules. Uniserialmodules of finite length and hence valuation Artinian rings are some distinguished classes ofco-multiplication rings. In additio...

متن کامل

A characterization of finitely generated multiplication modules

 Let $R$ be a commutative ring with identity and $M$ be a finitely generated unital $R$-module. In this paper, first we give necessary and sufficient conditions that a finitely generated module to be a multiplication module. Moreover, we investigate some conditions which imply that the module $M$ is the direct sum of some cyclic modules and free modules. Then some properties of Fitting ideals o...

متن کامل

MULTIPLICATION MODULES THAT ARE FINITELY GENERATED

Let $R$ be a commutative ring with identity and $M$ be a unitary $R$-module. An $R$-module $M$ is called a multiplication module if for every submodule $N$ of $M$ there exists an ideal $I$ of $R$ such that $N = IM$. It is shown that over a Noetherian domain $R$ with dim$(R)leq 1$, multiplication modules are precisely cyclic or isomorphic to an invertible ideal of $R$. Moreover, we give a charac...

متن کامل

A note on primary-like submodules of multiplication modules

Primary-like and weakly primary-like submodules are two new generalizations of primary ideals from rings to modules. In fact, the class of primary-like submodules of a module lie between primary submodules and weakly primary-like submodules properly.  In this note, we show that these three classes coincide when their elements are submodules of a multiplication module and satisfy the primeful pr...

متن کامل

ON COMULTIPLICATION AND R-MULTIPLICATION MODULES

We state several conditions under which comultiplication and weak comultiplication modulesare cyclic and study strong comultiplication modules and comultiplication rings. In particular,we will show that every faithful weak comultiplication module having a maximal submoduleover a reduced ring with a finite indecomposable decomposition is cyclic. Also we show that if M is an strong comultiplicati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006